Monday, December 16, 2024

COQ MODULE SYSTEM PART 1

COQ MODULE SYSTEM PART 1

REVISED: Tuesday, December 17, 2024




1. COQ'S MODULE SYSTEM PART 1

Coq's module system is a powerful tool for organizing and structuring large-scale formal developments. By breaking down complex proofs and definitions into smaller, modular components, modules promote code reusability, maintainability, and modularity.

Basic Module Structure:

A Coq module typically consists of:

Module Declaration:

Module MyModule. (* START MYMODULE *)
(* Module Body *)
End MyModule. (* END MYMODULE*)

Module MyModule. (* START MYMODULE *)

Module Body:

Definitions: Definition, Fixpoint, Inductive
Theorems: Theorem, Lemma, Proposition
Tactics: Proof, Qed
Other Modules: Nested modules
Importing and Exporting Definitions:

Import:

Import MyModule.
Imports all definitions from MyModule into the current scope.

Export:

Export MyModule.
Exports all definitions from MyModule to any module that imports it.

Example: A Simple Module for Natural Numbers

End MyModule. (* END MYMODULE *)

Module NatModule. (* START NATMODULE *)

(* Inductive definition of natural numbers *)
Inductive nat : Type :=
   | O : nat
   | S : nat -> nat.

(* Definition of addition on natural numbers *)
Fixpoint plus (n m : nat) : nat :=
   match n with
   | O => m
   | S p => S (plus p m)
   end.

End NatModule. (* END NATMODULE *)

Using the Module:

Import NatModule.

(* Example usage of the `plus` function *)
Theorem plus_comm : forall n m : nat, plus n m = plus m n.
Proof.
  (* ... proof using the `plus` function from NatModule *)
Qed.

Advanced Module Features:

Module Parameters:

Module MyModule (A : Type).  (* START MYMODULE *)
(* Module body using A *)
End MyModule.  (* END MYMODULE *)

Allows for generic modules that can be instantiated with different types.

Module Signatures:

Define interfaces for modules, specifying the signatures of exported definitions.

Functors:

Higher-order modules that can transform other modules.

Example: A Generic List Module

Module ListModule (A : Type). (* START LISTMODULE *)

Inductive list : Type :=
   | nil : list
   | cons : A -> list -> list.

(* ... other list operations *)

End ListModule.  (* END LISTMODULE *)

Using the Generic List Module:

Import ListModule.

(* Instantiate the module for natural numbers *)
Module NatList := ListModule(nat).

(* Use the `nil` and `cons` constructors for natural number lists *)
Definition my_list : NatList.list := NatList.cons 1 (NatList.cons 2 NatList.nil).

2. CONCLUSION

By effectively utilizing Coq's module system, you can organize your formal developments into well-structured, reusable components, making your proofs more modular, maintainable, and easier to understand.

3. REFERENCES

Bird, R. (2015). Thinking Functionally with Haskell. Cambridge, England: Cambridge University Press.

Davie, A. (1992). Introduction to Functional Programming Systems Using Haskell. Cambridge, England: Cambridge University Press.

Goerzen, J. & O'Sullivan, B. &  Stewart, D. (2008). Real World Haskell. Sebastopol, CA: O'Reilly Media, Inc.

Hutton, G. (2007). Programming in Haskell. New York: Cambridge University Press.

Lipovača, M. (2011). Learn You a Haskell for Great Good!: A Beginner's Guide. San Francisco, CA: No Starch Press, Inc.

Pierce, Benjamin C., et al., editors. Logical Foundations. Vol. 1 of Software Foundations. Electronic Textbook, 2024. Version 6.7, http://softwarefoundations.cis.upenn.edu.

Thompson, S. (2011). The Craft of Functional Programming. Edinburgh Gate, Harlow, England: Pearson Education Limited.