Tuesday, January 10, 2017

HASKELL PROOF BY CONTRADICTION EXAMPLE 1

HASKELL PROOF BY CONTRADICTION EXAMPLE 1

REVISED: Saturday, October 5, 2024


1. INTRODUCTION

1.1 GIVEN

1.1.1 Consider the following proposition:

For all n in the set of positive Natural numbers, the function f n = n ^ 2 + n + 41 is a prime number is True.

1.1.2 Definition

A Prime Number is a whole number greater than or equal to 2 which has two and only two factors; for example, it can be divided without a remainder only by 1 and itself.

2. HASKELL PROGRAM

2.1 TO BE PROVED

We will use a proof by contradiction.

Therefore, we assume that the statement of the proposition that for all n in the set of positive Natural numbers, the function f n = n ^ 2 + n + 41 is a prime number is False.

2.2 PROOF

The Haskell program used for the proof is as follows:

-- C:\Users\Tinnel\Haskell2024\proof1.hs

import Data.Char
import Data.List
import Data.List (elemIndex)
import Data.Map
import Data.Maybe
import Data.Set
import System.IO
--
--
main :: IO ()    -- Has type I/O action.
main = do {  putStrLn ""    -- putStrLn Has type I/O action.
                   ; putStrLn "======================================================"
                   ; putStrLn ""
                   ; putStrLn "Prove the proposition that for all n in the set of positive Natural numbers, the function"
                   ; putStrLn ""
                   ; putStrLn "f n = n ^ 2 + n + 41"
                   ; putStrLn ""
                   ; putStrLn "is a prime number is False."
                   ; putStrLn ""
                   ; putStrLn "======================================================"
                   ; putStrLn ""
                   ; putStrLn "Type a positive integer value for n then press Enter."
                   ; s <- getLine -- getLine is a function, getLine :: IO String
                   ; putStrLn ""
                   ; putStrLn "======================================================"
                   ; putStrLn ""
                   ; putStrLn ("Computing the function with n equal to " ++ s ++ ".")
                   ; putStrLn ""
                   ; let n = (read s)::Integer  -- Type converted from IO String s to Integer n.
                   ; let z = f n  -- z is the integer prime number computed by n.
                   ; let zS = show z  -- Type converted from Integer z to String z.
                   ; putStrLn ("f n = n ^ 2 + n + 41 equals " ++ zS ++ ".")
                   ; putStrLn ""
                   ; putStrLn "======================================================"
                   ; putStrLn ""
                   ; putStrLn "The list of the first 300 prime numbers starting with 2 is as follows:"
                   ; putStrLn ""
                   ; print p  -- The list of prime numbers.
                   ; putStrLn ""
                   ; putStrLn "======================================================"
                   ; putStrLn ""
                   ; putStrLn ("QUESTION: True or False is " ++ zS ++ " a prime number?")
                   ; putStrLn ""
                   ; let i = if elem z p == True then "True" else "False"
                   ; putStrLn ("ANSWER: " ++ i ++ ".")
                   ; putStrLn ""
                   ; putStrLn ""
                   ; putStrLn ""
                 }
--
--
-- t computes prime numbers.
t :: Integral a => [a] -> [a]
t (p : xs) = p : t [x | x <- xs, x `mod` p /= 0]

-- primes is a list of prime numbers computed by t.
primes :: [Integer]
primes = t [2..]  -- Starting with 2 because zero and 1 are not prime numbers.
                         -- However, main can compute n = 0, and n = 1.

-- p is a list of prime numbers taken from those computed by t.
p :: [Integer]
p = take 300 primes

-- f n computes each number compared to the list p for prime.
f :: Num a => a -> a
f n = n ^ 2 + n + 41

-- read :: Read a => String -> a
-- (==) :: (Eq a) => a -> a -> Bool


3. GHCi RUN

GHCi, version 9.8.1: http://www.haskell.org/ghc/  :? for help
Prelude> :l proof1
[1 of 1] Compiling Main             ( proof1.hs, interpreted )
Ok, modules loaded: Main.

*Main> main

=========================================================================

Prove the proposition that for all n in the set of positive Natural numbers, the function

f n = n ^ 2 + n + 41

is a prime number is False.

=========================================================================

Type a positive integer value for n then press Enter.
5

=========================================================================

Computing the function with n equal to 5.

f n = n ^ 2 + n + 41 equals 71.

=========================================================================

The list of the first 300 prime numbers starting with 2 is as follows:

[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997,1009,1013,1019,1021,1031,1033,1039,1049,1051,1061,1063,1069,1087,1091,1093,1097,1103,1109,1117,1123,1129,1151,1153,1163,1171,1181,1187,1193,1201,1213,1217,1223,1229,1231,1237,1249,1259,1277,1279,1283,1289,1291,1297,1301,1303,1307,1319,1321,1327,1361,1367,1373,1381,1399,1409,1423,1427,1429,1433,1439,1447,1451,1453,1459,1471,1481,1483,1487,1489,1493,1499,1511,1523,1531,1543,1549,1553,1559,1567,1571,1579,1583,1597,1601,1607,1609,1613,1619,1621,1627,1637,1657,1663,1667,1669,1693,1697,1699,1709,1721,1723,1733,1741,1747,1753,1759,1777,1783,1787,1789,1801,1811,1823,1831,1847,1861,1867,1871,1873,1877,1879,1889,1901,1907,1913,1931,1933,1949,1951,1973,1979,1987]

=========================================================================

QUESTION: True or False is 71 a prime number?

ANSWER: True.

4. TRUTH TABLE

Running the Haskell program for each element of n we obtain the truth table shown below:

n    f n = n^2 + n + 41      Prime
---- ------------------------     -------
  0                           41    True
  1                           43    True
  2                           47    True
  3                           53    True
  4                           61    True
  5                           71    True
  6                           83    True
  7                           97    True
  8                         113    True
  9                         131    True
10                         151    True
11                         173    True
12                         197    True
13                         223    True
14                         251    True
15                         281    True
16                         313    True
17                         347    True
18                         383    True
19                         421    True
20                         461    True
21                         503    True
22                         547    True
23                         593    True
24                         641    True
25                         691    True
26                         743    True
27                         797    True
28                         853    True
29                         911    True
30                         971    True
31                       1033    True
32                       1097    True
33                       1163    True
34                       1231    True
35                       1301    True
36                       1373    True
37                       1447    True
38                       1523    True
39                       1601    True
40                       1681    False  Q.E.D.
41                       1763    False
42                       1847    True
43                       1933    True
44                       2021     Outside of the first 300 prime number range.

5. CONCLUSION

The proposition that for all n in the set of positive Natural numbers, the function f n = n ^ 2 + n + 41 is a prime number is False.

As shown above, you must be careful when concluding whether a proof is True or False. The first 39 tests would lead most people to assume f n = n^2 + n + 41 could be used to compute prime numbers. However tests 40 and 41 show the proposition is not True, it is False.

6. REFERENCES

Bird, R. (2015). Thinking Functionally with Haskell. Cambridge, England: Cambridge University Press.

Davie, A. (1992). Introduction to Functional Programming Systems Using Haskell. Cambridge, England: Cambridge University Press.

Goerzen, J. & O'Sullivan, B. &  Stewart, D. (2008). Real World Haskell. Sebastopol, CA: O'Reilly Media, Inc.

Hutton, G. (2007). Programming in Haskell. New York: Cambridge University Press.

Lipovača, M. (2011). Learn You a Haskell for Great Good!: A Beginner's Guide. San Francisco, CA: No Starch Press, Inc.

Thompson, S. (2011). The Craft of Functional Programming. Edinburgh Gate, Harlow, England: Pearson Education Limited.