Monday, June 1, 2015

HASKELL RECURSIVE DATA STRUCTURE TREE EXAMPLES

HASKELL TREE RECURSIVE DATA STRUCTURE EXAMPLES

REVISED: Wednesday, October 9, 2024




1. INTRODUCTION

To learn how to code a recursive data structure tree start with the following three basic definitions: 

-- Firstly, the basic definition of a Tree.
data Tree a = Leaf a | Branch (Tree a) (Tree a)
   deriving (Eq, Show)

A Tree a is either a leaf, containing a value of type a or a branch, from which hangs two other trees of type Tree a.

-- Secondly, the basic definition of map for lists.
map              :: (a -> b) -> [a] -> [b]
map       _ [] = []
map f (x:xs) = f x : map f xs

-- Thirdly, the basic definition of foldr for lists.
foldr                 :: (a -> b -> b) -> b -> [a] -> b
foldr       f z []  = z
foldr f z (x:xs) = f x (foldr f z xs)

2. RECURSIVE DATA STRUCTURE TREE EXAMPLE 1

For details regarding this Example 1 code please refer to the following link.


module RDST1 where

import Prelude hiding (map, foldr)

data Tree a = Leaf a | Branch (Tree a) (Tree a)
   deriving (Eq, Show)

-- The basic map definition for a list is used to write the basic map definition for a tree. 
treeMap                       :: (a -> b) -> Tree a -> Tree b
treeMap                    f  = g where
   g                 (Leaf x) = Leaf (f x)
   g (Branch left right) = Branch (g left) (g right)

-- The basic foldr definition for a list is used to write the basic fold definition for a tree. 
treeFold                      :: (b -> b -> b) -> (a -> b) -> Tree a -> b
treeFold fbranch fleaf = g where g (Leaf x) = fleaf x
                                       g (Branch left right) = fbranch (g left) (g right)
 
tree1 :: Tree Integer
tree1 = Branch (Branch (Branch (Leaf 1) (Branch (Leaf 2) (Leaf 3))) (Branch (Leaf 4) (Branch (Leaf 5) (Leaf 6)))) (Branch (Branch (Leaf 7) (Leaf 8)) (Leaf 9))

tree2 :: Tree Integer
tree2 = Branch (Branch (Leaf 1) (Leaf 2)) (Branch (Leaf 3) (Leaf 4))

-- Doubles each value in tree.
doubleTree = treeMap (*2)

-- Sum of the Leaf values in tree.
sumTree = treeFold (+) id 

-- List of the Leaves of a tree.
fringeTree = treeFold (++) (: [])

main = do
    putStrLn $ "Original tree1: " ++ (show tree1)
    putStrLn $ "Original tree2: " ++ (show tree2)

GHCi:

Prelude>  :load RDST1
[1 of 1] Compiling RDST1              (RDST1.hs, interpreted )
Ok, modules loaded: RDST1.
Prelude>

Prelude>  main
Original tree1: Branch (Branch (Branch (Leaf 1) (Branch (Leaf 2) (Leaf 3))) (Branch (Leaf 4) (Branch (Leaf 5) (Leaf 6)))) (Branch (Branch (Leaf 7) (Leaf 8)) (Leaf 9))
Original tree2: Branch (Branch (Leaf 1) (Leaf 2)) (Branch (Leaf 3) (Leaf 4))
Prelude>

Prelude>  sumTree tree1
45
Prelude>

Prelude>  doubleTree tree1 
Branch (Branch (Branch (Leaf 2) (Branch (Leaf 4) (Leaf 6))) (Branch (Leaf 8) (Branch (Leaf 10) (Leaf 12)))) (Branch (Branch (Leaf 14) (Leaf 16)) (Leaf 18))
Prelude>

Prelude>  fringeTree tree1
[1,2,3,4,5,6,7,8,9]
Prelude>

Prelude>  fringeTree tree2
[1,2,3,4]
Prelude>

Prelude>  let tree3 = doubleTree tree1
Prelude>

Prelude>  tree3
Branch (Branch (Branch (Leaf 2) (Branch (Leaf 4) (Leaf 6))) (Branch (Leaf 8) (Branch (Leaf 10) (Leaf 12)))) (Branch (Branch (Leaf 14) (Leaf 16)) (Leaf 18))
Prelude>

Prelude>  fringeTree tree3
[2,4,6,8,10,12,14,16,18]
Prelude>

3. RECURSIVE DATA STRUCTURE TREE EXAMPLE 2

For details regarding this Example 2 code please refer to the following link.


module RDST2 where

data MyTree a = MyEmptyNode
              | MyFilledNode a (MyTree a) (MyTree a)
              deriving (Eq,Ord,Show,Read)

main :: IO ()
main  =
   do
      putStrLn "Begin program"

      let aMyTree = MyFilledNode 5 (MyFilledNode 3 MyEmptyNode MyEmptyNode) (MyFilledNode 2 MyEmptyNode MyEmptyNode)
      print aMyTree
      print (sumMyTree aMyTree)

      let bMyTree = MyFilledNode "r" (MyFilledNode "s" MyEmptyNode MyEmptyNode) (MyFilledNode "a" MyEmptyNode MyEmptyNode)
      print bMyTree

      putStrLn "End program"

sumMyTree                                       :: Num a => MyTree a -> a
sumMyTree MyEmptyNode             = 0
sumMyTree (MyFilledNode n t1 t2) = n + sumMyTree t1 + sumMyTree t2

GHCi:

Prelude>  :load RDST2
[1 of 1] Compiling RDST2              (RDST2.hs, interpreted )
Ok, modules loaded: RDST2.
Prelude>

Prelude>  main
Begin program
MyFilledNode 5 (MyFilledNode 3 MyEmptyNode MyEmptyNode) (MyFilledNode 2 MyEmptyNode MyEmptyNode)
10
MyFilledNode "r" (MyFilledNode "s" MyEmptyNode MyEmptyNode) (MyFilledNode "a" MyEmptyNode MyEmptyNode)
End program
Prelude>

4. RECURSIVE DATA STRUCTURE TREE EXAMPLE 3

For details regarding this Example 3 code please refer to the following link.


module RDST3 where

import Control.Applicative

data MyTree a = MyNode a [MyTree a]
                deriving (Show)

instance Functor MyTree where
   fmap f (MyNode x treeList) = MyNode (f x) (map (fmap f) treeList)

instance Applicative MyTree where
   pure x = MyNode x []
   (MyNode f treeFunctionList) <*> (MyNode x treeElementList) =
      MyNode (f x) ( (map (fmap f) treeElementList) ++ (map (<*> (MyNode x treeElementList)) treeFunctionList) )

instance Monad MyTree where
   return x = MyNode x []
   MyNode x treeList >>= f = MyNode x' (treeList' ++ map (>>= f) treeList)
      where MyNode x' treeList' = f x

main :: IO ()
main  =
   do
      putStrLn "Program begins."

      putStrLn "Tests that prove that MyTree behaves as a type constructor."

      let tree1 = MyNode 5 [MyNode 3 [], MyNode 2 []]
      print tree1

      let tree2 = MyNode "ABC" [MyNode "DEFG" [], MyNode "HIJKL" []]
      print tree2

      putStrLn "Tests that prove that MyTree behaves as a Functor."

      print (fmap (*2) tree1)
      print (fmap length tree2)

      putStrLn "Tests that prove that MyTree behaves as an Applicative."

      print ((MyNode (*2) []) <*> tree1)
      print ((MyNode (*2) [MyNode (+100) [], MyNode (+1000) []]) <*> tree1)
      print ((MyNode init []) <*> tree2)
      print ((MyNode init [MyNode reverse [MyNode tail []]]) <*> tree2)

      putStrLn "Tests that prove that MyTree behaves as a Monad."

      print (tree1 >>= (\x -> MyNode (x+200) []))
      print (tree2 >>= (\x -> MyNode (tail x) []))

      putStrLn "Program ends."

GHCi:

Prelude>  :load RDST3
[1 of 1] Compiling Main             ( RDST3.hs, interpreted )
Ok, modules loaded: Main.
Prelude>

Prelude>  main
Program begins.
Tests that prove that MyTree behaves as a type constructor.
MyNode 5 [MyNode 3 [],MyNode 2 []]
MyNode "ABC" [MyNode "DEFG" [],MyNode "HIJKL" []]
Tests that prove that MyTree behaves as a Functor.
MyNode 10 [MyNode 6 [],MyNode 4 []]
MyNode 3 [MyNode 4 [],MyNode 5 []]
Tests that prove that MyTree behaves as an Applicative.
MyNode 10 [MyNode 6 [],MyNode 4 []]
MyNode 10 [MyNode 6 [],MyNode 4 [],MyNode 105 [MyNode 103 [],MyNode 102 []],MyNode 1005 [MyNode 1003 [],MyNode 1002 []]]
MyNode "AB" [MyNode "DEF" [],MyNode "HIJK" []]
MyNode "AB" [MyNode "DEF" [],MyNode "HIJK" [],MyNode "CBA" [MyNode "GFED" [],MyNode "LKJIH" [],MyNode "BC" [MyNode "EFG" [],MyNode "IJKL" []]]]
Tests that prove that MyTree behaves as a Monad.
MyNode 205 [MyNode 203 [],MyNode 202 []]
MyNode "BC" [MyNode "EFG" [],MyNode "IJKL" []]
Program ends.
Prelude> 

5. CONCLUSION

The purpose of this tutorial is not to discuss the code but to point out you should always start with the basic things you know about Haskell in order to understand the things you think are difficult. Learn the basic concepts they are the building blocks for understanding Haskell.

6. REFERENCES

Bird, R. (2015). Thinking Functionally with Haskell. Cambridge, England: Cambridge University Press.

Davie, A. (1992). Introduction to Functional Programming Systems Using Haskell. Cambridge, England: Cambridge University Press.

Goerzen, J. & O'Sullivan, B. &  Stewart, D. (2008). Real World Haskell. Sebastopol, CA: O'Reilly Media, Inc.

Hutton, G. (2007). Programming in Haskell. New York: Cambridge University Press.

Lipovača, M. (2011). Learn You a Haskell for Great Good!: A Beginner's Guide. San Francisco, CA: No Starch Press, Inc.

Thompson, S. (2011). The Craft of Functional Programming. Edinburgh Gate, Harlow, England: Pearson Education Limited.